Course Information
Course Title: Application of Inductively Coupled Plasma Atomic Emission (ICP-AES) Spectrometry
Categories: 1 - Atomic Spectrometry
2 - Atomic Spectroscopy
3 - Environmental Analysis
4 - Sample Preparation
5 - Spectroscopy
6 - Inductively Coupled Plasma
Instructor(s): Isaac (Joe) Brenner Course Number: 4
Affiliation: Brenner Scientifc
Course Date: 03/08/2009 - Sunday Course Length: 1 Day Course
Start Time: 08:30 AM End Time: 05:00 PM
Fee: $425 ($625 after 2/9/09) Textbook Fee:

Course Description
Inductively coupled plasma atomic emission spectrometry (ICP-AES) has become the workhorse in analytical laboratories where multielement analysis has to be performed on a wide range of materials. This short course will review the basics of the ICP, sample introduction, and spectroscopic and nonspectroscopic interference effects for liquid and direct solids analysis. The course will highlight recent instrumentation developments and applications of ICP-AES for analysis of major, minor and trace elements in geo-environmental, biological, and with emphasis on industrial materials. The course will critically review applications of axially and radially viewed ICPs using multichannel charge transfer (CCDs, CIDs) spectrometers. The benefits and drawbacks of axially vs. radially viewed plasmas will be critically viewed using analytical figures of merit such as limits of detection, calibration linearity and nonspectroscopic matrix interferences derived from sample concomitants. A method development exercise will be conducted with the participants. The course will focus on problem solving in participants’ laboratories. This course should also be made avaialble to undergraduate students in colleges and universities

Target Audience
Level of the course Advanced- intermediate Although the course content is in the intermediate-advanced category, beginners will gain a wide outlook on the realistic application of the technique. The level of the material has been designed taking into consideration that participants have a basic knowledge of atomic spectroscopy and experience with ICP techniques. As a result the course in the past has taken advantage of this and has resulted in considerable interaction between the instructor and the participants, and among participants themselves. This has resulted in a beneficial exchange of data, problems and problem solving. However, the course also takes into consideration that there are newcomers and their concerns will be addressed. For them this course will provide an insight to practical ICP spectroscopy and associated sample preparation strategies. This course is intended for laboratory managers, quality control and assurance specialists, research scientists, environmental chemists, geochemists, biologists, metallurgists, toxicologists, new and experienced users of atomic absorption and plasma spectrometries, and technical personnel at all levels. The gathering of this plethora of information will provide an insight to critical stages of multielement analysis in research, environmental monitoring, agriculture and in industry and assist in selection of sample preparation approaches, operation conditions and instrumentation best suited to the applications of the audience

Course Outline
1.1. Fundamental aspects of ICP-AES. 
1.2. Instrumentation 1
2.1. Overview of spectrometers - Solid-state detectors vs. conventional PMT-based  Systems. CIDs vs. CCDs.
1.2.2. Criteria for instrument selection - wavelength range, LODs, sample throughput. Advantages for real sample multielement analysis. Versatility in line selection – the ultra low UV region for determination of the halogens. Ion vs. atom lines.
1.2.3. Axially and radially viewed plasmas. Critical comparison using conventional figures of merit (limits of detection, response linearity, and matrix effects). Is dual view necessary?
1.3. Sample introduction
1.3.1. Conventional sample introduction. Pneumatic, cross-flow, low-consumption, high-salt V-groove, and desolvating nebulizers.  1.3.2. Practical approach to sample introduction. Limitations and advantages using LODS, matrix effects, convenience of operation and cost.
1.3.3. Types of nebulizers to be used as a function of the application
1.4. Decomposition strategies 
1.4.1. Advantages of solution techniques, considerations for calibration and validation.
1.4.2. Decomposition strategies. Acid decomposition, fusions, sinters, open dish, pressurized containers, microwave dissolution, and digestion. 
1.4.3. Critical evaluation of advantages and disadvantages. For example, chemical resistance of refractory samples, loss of volatiles, recovery, reagent cost and contamination.
1.4.4. Partial decomposition and extraction for determining mode of occurrence of elements and species for environmental evaluations
1.4.5. Recipes for preparation of geological, environmental, biological, and energy-based samples such as fly ash, coal, crude oil, and multiphase bituminous sludge.
1.4.6. Compliant methods of sample preparation for analysis of waters, wastewaters, and solid wastes (EPA 200.7, 200.8, SW-846 6010B and 6020A) will be summarized.
1.4.7. Performances will be evaluated using conventional figures of merit such as limits of detection, recovery, sample throughput, and contamination. 
2.1. Problem Solving - Effect of the sample matrix on plasma and sample introduction systems. 
2.1.1. Spectral interferences
2.1.2. Spectral line selection criteria  LODs, spectral interferences Procedures for compensation, background correction, interference equivalent coefficients. Importance of resolution. Mathematical procedures.
2.2. Nonspectroscopic interferences
2.2.1. Physical effects in the aerosol generation and transport systems. Salt and acid concentrations, memory effects. Effect of ICP operating conditions (RF power, nebulizer flow rate, and torch configuration).  Salt clogging in torch injectors.
2.2.2. Plasma effects Effect of sample composition – easily ionized elements and Ca. The use of Mg II 285/Mg I 280 and Mn II 257/Cu I 324 nm ratios as matrix effect criteria and instrument set up. Importance of spectral line energy -. Ion vs. atom lines
2.2.3. Compensating nonspectroscopic effects  Optimization of ICP operating conditions – determination of robust conditions. Internal standards - criteria for selecting internal standards: Energy characteristics of spectral lines, excitation and ionization potentials, spectral proximity, low abundance in sample, stability in solution, freedom from spectral interference. Advantages and disadvantages 2.3. Methods development  an exercise with the course participants - preparing a standard operating procedure for the analysis of phosphates and phosphoric acid and associated wastes
2.4. Selection of analyte spectral lines
2.5. How to select the internal standard 
2.6. Getting started – Optimization of the ICP and nebulizer conditions
2.7. Calibration and calibration validation
2.8. Factors effecting accuracy and precision
2.9. QA/QC - calibration and interference checks, addition method and spikes, duplicates
2.10. Validation - Role of SRMs and Proficiency Testing, Control charts 
3. Conclusions and discussions  Integration ICP-AES and MS pros and cons

Course Instructor's Biography
Dr. Isaac (Joe) Brenner currently serves as a Senior Consulting Scientist in Geo-Environmental Analytical Science and Technologies. He is actively involved in instrumental and methods development for solution and solids analysis using ICP-AES and ICP-MS. He obtained his Ph.D. in Geochemistry from the Hebrew University, Jerusalem, Israel in 1980. Dr. Brenner is a guest professor with the Department of Chemistry and Radiochemistry, in the Graz Technical University, Graz, Austria, the Autonoma University of Barcelona, Spain, and the Earth Science Dynamic Center in the Cheng Feng You University in Tainan, Taiwan. He was head of the Application Laboratory in Jobin Yvon and a senior scientist at the Varian Research Center, Palo Alto, California, USA where he developed analytical methodologies for ICP-AES using axially viewed and radially viewed ICPs He is a scientifc adviser in the Dan Cities Authority for Effluents and the Environment. In the application of ICP-MS the instructor developed methods in the Environmental Analytical Laboratory, and at various regulation laboratories in Spain. He is also a special project adviser in Thermo-Fisher Scientific in Madrid, Spain. He specializes in preparing environmental laboratories for ISO/EC 17025 accreditation using Standard Methods and USEAPA 2007, 200.8, 6010c and 6020A procedures. This includes sampling strategies, preparation of SOPs, instruction, QA/QC and data interpretation. Dr Brenner is also an adviser in the Rotem-Amfert Phosphate Complex, in the Food Safety industry and in waste disposal. Dr Joe Brenner has delivered more than 500 oral presentations, short courses, round table discussions, at universities, international symposiums, research institutes, and instrument manufacturers; he has 100 peer-reviewed scientific publications.