Course Information
Course Title: Application of Inductively Coupled Plasma Atomic Emission (ICP-AES) Spectrometry
Categories: 1 - Atomic Spectrometry
2 - Atomic Spectroscopy
3 - Quality/Regulatory/Compliance
4 - Environmental Analysis
5 - Sample Preparation
6 - Inductively Coupled Plasma
Instructor(s): Isaac Brenner Course Number: 96
Affiliation: Brenner Scientific
Course Date: 03/10/2012 - Saturday Course Length: 1 Day Course
Start Time: 08:30 AM End Time: 05:00 PM
Fee: $455 ($655 after 2/13/12) Textbook Fee:

Course Description
Inductively coupled plasma atomic emission spectrometry (ICP-AES) has become the workhorse in analytical laboratories where multielement analysis has to be performed on a wide range of materials. Successful implementation of the methodology necessitates a thorough practical knowledge of the basic fundamentals, instrumentation, sample preparation and measurement. This short course will review the basics of the ICP, sample introduction, and spectroscopic and nonspectroscopic interference effects for liquid and direct solids analysis. The course will highlight recent instrumentation developments and applications of ICP-AES for analysis of major, minor and trace elements in geo-environmental, biological, and industrial materials. The course will critically review applications of axially and radially viewed ICPs using multichannel charge transfer (CCDs, CIDs) spectrometers. The benefits and drawbacks of axially vs. radially viewed plasmas will be critically viewed using analytical figures of merit such as limits of detection, calibration linearity and spectroscopic and nonspectroscopic matrix interferences derived from sample concomitants. A method development exercise will be conducted with the participants. The course will focus on problem solving in participants’ laboratories.

Target Audience
Target audience This course is intended for laboratory managers, quality control and assurance specialists, research scientists, environmental chemists, geochemists, biologists, metallurgists, toxicologists, new and experienced users of atomic absorption and plasma spectrometries, and technical personnel at all levels.

Course Outline
Fundamental aspects of ICP-AES. 
Overview of spectrometers - Solid-state detectors vs. conventional PMT-based 
Systems. CIDs vs. CCDs.
Criteria for instrument selection - wavelength range, LODs, resolution, sample throughput, multielement capability. Advantages for real sample multielement analysis. Versatility in line selection – the ultra low UV region for determination of the halogens. Ion vs. atom lines.
Axially and radially viewed plasmas. Critical comparison using conventional figures of merit (limits of detection, response linearity, and matrix effects). Is dual view necessary?

Sample introduction
Conventional sample introduction. Pneumatic, cross-flow, low-consumption, high-salt V-groove, and desolvating nebulizers. 
Practical approach to sample introduction. Limitations and advantages using LODS, matrix effects, convenience of operation and cost.
Types of nebulizers to be used as a function of the application

Decomposition strategies 
Advantages of solution techniques, considerations for calibration and validation.
Decomposition strategies. Acid decomposition, fusions, sinters, open dish, pressurized containers, microwave dissolution, and digestion. 
Critical evaluation of advantages and disadvantages. For example, chemical resistance of refractory samples, loss of volatiles, recovery, reagent cost and contamination.
Partial decomposition and extraction for determining mode of occurrence of elements and species for environmental evaluations
Recipes for preparation of geological, environmental, biological, and energy-based samples such as fly ash, coal, crude oil, and multiphase bituminous sludge.
Compliant methods of sample preparation for analysis of waters, wastewaters, and solid wastes (EPA 200.7, 200.8, SW-846 6010B and 6020A) will be summarized. 
Performances will be evaluated using conventional figures of merit such as limits of detection, recovery, sample throughput, and contamination. 

Problem Solving - Effect of the sample matrix on plasma and sample introduction systems. 
Spectral interferences
Spectral line selection criteria
LODs, spectral interferences Procedures for compensation, background correction, interference equivalent coefficients. Importance of resolution. Mathematical procedures.

Nonspectroscopic interferences
Physical effects in the aerosol generation and transport systems. Salt and acid concentrations, memory effects. Effect of ICP operating conditions (RF power, nebulizer flow rate, and torch configuration).  Salt clogging in torch injectors.
Plasma effects
Effect of sample composition – easily ionized elements and Ca. The use of Mg II 285/Mg I 280 and Mn II 257/Cu I 324 nm ratios as matrix effect criteria and instrument set up. Importance of spectral line energy -. Ion vs. atom lines.
Effect of organic solvents, in particular methanol on high ionization potential elements
Compensating nonspectroscopic effects 
Optimization of ICP operating conditions – determination of robust conditions. Internal standards - criteria for selecting internal standards: Energy characteristics of spectral lines, excitation and ionization potentials, spectral proximity, low abundance in sample, stability in solution, freedom from spectral interference. Advantages and disadvantages

Methods development  an exercise with the course participants - preparing a standard operating procedure for analysis of waters and wastes based on EPA 6010C 
Selection of analyte spectral lines
How to select the internal standard 
Getting started – Optimization of the ICP and nebulizer conditions
Calibration and calibration validation
Factors effecting accuracy and precision
QA/QC - calibration and interference checks, addition method and spikes, duplicates,
Validation - Role of CRMs and Proficiency Testing, Control charts 

Conclusions and discussions 
Analysis of geological samples – aspects of sample preparation
Direct solids techniques - Bulk analysis of geological and related refractory materials and coal using spark and laser ablation and slurry nebulization.

Course Instructor's Biography
Dr. Isaac (Joe) Brenner currently serves as a senior consulting Scientist in geo-environmental analytical science and technologies. He is actively involved in instrumental and methods development for solution and solids analysis using ICP-AES and ICP-MS. He obtained his Ph.D. in Geochemistry from the Hebrew University, Jerusalem, Israel in 1980. Dr. Brenner was a guest professor in several academic institutions world-wide (Technical University Graz, Austria, Earth Dynamics Science Center, National Cheng Kung University in Taiwan). In the past Joe Brenner was a guest scientist in the Laboratoire de Chimie Analytique Bio Inorganique et Environnement, (LCABIE) CNRS, Pau, France, Chuo University, Tokyo, Japan, Faculty of Chemistry, Autonoma University, Barcelona, Spain). He was head of the application labs in Jobin Yvon in Longjumeau, France; a senior scientist in the Varian Research Center, Palo Alto, California, USA In these positions, he developed analytical methodologies for ICP-AES using radial and axially viewed ICPs. Brenner was a consulting scientist for ICP-AES and MS application and marketing mainly in the environmental field in Thermo Fisher Scientific in Madrid. Brenner is an adviser for compliant analysis of waters and wastes at the Dan City Authority for Effluents and the Environment in Israel. He specializes in preparing environmental laboratories for ISO/EC 17025 accreditation using Standard Methods and US EPA 2007, 200.8, 6010c and 6020A procedures. This includes sampling strategies, preparation of SOPs, instruction, QA/QC and data interpretation. Dr Joe Brenner has delivered more than 600 oral presentations, short courses, round table discussions, at universities, international symposiums, research institutes, and instrument manufacturers; he has 100 peer-reviewed scientific publications.